

THE SECRET'S IN THE SCIENCE®

HM INOCULANT®

ALL CROP BACTERIAL SILAGE INOCULANT

THE SILAGE MAKING PROCESS

Silage making is a complex process involving many different criteria which, if managed correctly, results in high quality and well fermented silage.

Care must be taken to ensure the grass entering the silage clamp is of the highest quality. This silage making process requires:

- Oxygen Elimination
- Heat
- Moisture
- Sugar
- Bacteria

No matter how good the fermentation process, the quality of the silage can be no better than the quality of the grass from which it is made.

THERE ARE TWO MAIN OBJECTIVES WHEN PRESERVING AND MAINTAINING THE CROPS GROWN FOR SILAGE

- 1 A RAPID DROP IN THE pH OF THE CROP
- 2 AEROBIC STABILITY FOR PROLONGED CLAMP LONGEVITY

AN EFFICIENT FERMENTATION PROCESS IS ESSENTIAL

WHAT CAN GO WRONG IN THE SILAGE MAKING PROCESS?

Low sugar levels, high nitrate levels, over wilting and poor clamp management are some of the main and commonly found factors contributing to poor quality and unpalatable silage.

WHAT CAN GO WRONG

PROBLEM	CAUSE
Rancid, fishy odour, slimy sticky texture	High butyric acid levels due to soil contamination, high manure levels, low dry matter crop under 30%
Mouldy silage with musty odour	Presence of oxygen, poor clamp filling and sealing, high dry matter above 50% or poor feedout management
Smell of vinegar	Acetic acid fermentation due to high levels of air reaching silage
Sweet smelling silage	High levels of ethanol produced by moulds
Ammonia odour	Due to excessive protein breakdown, clostridial fermentation and high pH levels
Smells burnt or tobacco	Due to excessive heating which is caused by secondary fermentation, also excessive wilting

SILAGE QUALITY LOSSES ARE ECONOMIC LOSSES

MEASURING SILAGE NUTRITIONAL VALUE THROUGH FORAGE AUDITS

Agri-Lloyd provide industry leading forage audit services as part of our science based approach to rumen health and nutrition.

In 2012 Agri-Lloyd invested in a state of the art Forage Analytical Assurance Group (FAA) approved laboratory, which enables us to deliver detailed forage analysis reports.

The analysis is conducted by our in-house Research and Development team and a full written report is provided with a 48 hours turn around time, setting the standard for the industry.

FORAGE AUDIT SERVICES

SILAGE wholecrop

FRESH GRASS

DETAILED FORAGE ANALYSIS REPORT WITHIN 48 HOURS

big bale, maize and

FOR GRAZING

FRESH GRASS

ANALYSIS 1. Dietary component (NIRS) 2. Minerals (ICP-OES)

ANALYSIS 1. Dietary component (NIRS) 2. Minerals (ICP-OES)

ANALYSIS 1. Dietary component (NIRS) 2. Minerals (ICP-OES)

HOW DOES HM INOCULANT® SUPPORT THE SILAGE MAKING PROCESS?

HM Inoculant[®] supplies a concentrated and complex mix of three specifically selected strains of lactic acid producing bacteria that function at different pH levels within the silage making process to give a more rapid and efficient fermentation process.

Lactic acid is a strong but safe acid which lowers the pH in the clamp creating a pickling effect.

Well preserved crops will have a lactic acid level of 80-100g/kg Dry Matter where as poorly fermented crops will have as little as 50g/kg.

HM Inoculant® induces a rapid and cool fermentation which reduces loss of energy components in the forage.

This not only reduces silage losses but HM Inoculant® treatment also preserves energy and digestibility of the forage.

THE MAJOR BENEFITS OF HM INOCULANT®

- Reduced Dry Matter losses
- Improved D Value
- Higher intakes and palatability
- Improved animal performance and feed efficiency
- Pathogen suppression
- Less secondary fermentation

CONTROL OF THE FERMENTATION **PROCESS IS KEY**

THE SCIENCE BEHIND HMINOCULANT®

With 40 years of evolving technology HM Inoculant® has been tried and tested by global institutions around the world.

Over 30 independent trials have been carried out which show consistent improvements in silage quality and animal performance.

You can find a selection of trials in this section. A more detailed understanding of our trials can be found on our website.

Source: University of Newcastle Department of Agricultural Biology and Nutrition

42.9

Untreated (control)

fig 3.

70

60

50

40

30

20

10

	No Additive	HM Inoculo
	TREA	ATMENT
NCE	Source: University of Newcast Agricultural Biology an	le Department of nd Nutrition
FICIENCY		
11.2		

10

IMPROVED SILAGE DIGESTIBILITY

62.4

65.6

HM Inoculant

Source: North of Scotland College of Agriculture -Aberdee

fig 5. PATHOGEN SUPPRESSION				
	CONTROL (NO ADDITIVE) RANGE OF 3 SAMPLES	HM INOCULANT® RANGE OF 4 SAMPLES		
FINAL pH	4.44 - 4.65	4.20 - 4.27		
CLOSTRIDIA C104/g	0.43 - 1100	0.004 - 0.75		
COLIFORM/g	6,500 - 48,000	Less than 10		
BUTYRIC ACID M.MOLE/Kg	28.5 - 97.3	Nil		
LACTIC ACID g/Kg DRY MATTER	77 - 136	84 - 160		

Source: Spoelstra, Lelystad Institute (Holland)

Source: North of Scotland College of Agriculture

HM INOCULANT® - A PROVEN PERFORMER

Agri-Lloyd International Ltd. Glendower Road, Leominster, Herefordshire, HR6 ORL, United Kingdom

Telephone: 01568 610111 Fax: 01568 610666 Email: office@agrilloyd.com

WWW.AGRILLOYD.COM

Agri-Lloyd Ireland Ltd.

Unit 1, Millennium Business Park, Finglas, Dublin 11, Ireland

Telephone: 01 864 9011 Fax: 01 864 9019 Email: officeireland@agrilloyd.com

WWW.AGRILLOYD.IE

